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Motivation: Why High Dimensionality Matters in
Economics and Panel Models?

High dimensionality: a large number of unknown
parameters.

Three common scenarios:

Many potentially relevant variables: e.g., provisions in trade
agreements, price of relevant goods.
Nonparameric or semiparametric modeling: example

Unobserved heterogeneity: fixed or correlated random
effects in nonlinear models.

Existing high-dim. methods may not be valid for panel data
models: estimation and inference under two-way
cluster-dependence.
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Graphic illustration of two-way cluster dependence
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Preview of Results

Model: a high-dimensional (regression) model for panel data.
E.g., Yit = θ0Dit + g0(Xit , ci , dt) + Uit .

Target: inference for low-dim. parameters in the presence of
high-dim. nuisance parameters.

Challenges: unit and time cluster dependence as well as weak
dependence across clusters; unobserved heterogeneity.

Main contribution i: a variant of (post) LASSO, robust to
two-way cluster-dependence in panel data.

Main contribution ii: a clustered-panel cross-fitting
approach.
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Preview of Results

Both the variant of LASSO and panel cross-fitting are of
independent interest.

Together, they allow for consistent estimation and valid
inference about the low-dim. parameter.

Main contribution iii: generalized-Mundlak (correlated
random effects) approach in the partial linear model.

Application: hidden dimensionality in estimating government
spending multiplier.
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Example: Hidden High Dimensionality

Estimation of the multiplier: the percentage increase in
output that results from the 1 percent increase in government
spending.

Researchers often start with a baseline model:

Yit = θ0Dit + Xitπ0 + ci + dt + Uit , E[ZitUit ] = 0

Robustness check: to avoid endogeneity caused by potential
misspecification,

Yit = θ0Dit + g0(Xit , ci , dt) + Uit .

Cost: noisy or infeasible estimation with limited sample sizes
(51 states with 39 periods).
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Challenge One

To reduce dimensionality: sparse method, regularized
estimator, e.g. LASSO.

Focus on a simplified model using the pooled panel:

Yit =θ0Dit + g0(Xit) + Uit

=θ0Dit + fitβ0 + rit + Uit by sparse approximation

Obtain (θ̃, β̃) by running penalized least square of Yit on
(Dit , fit).
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Twoway Clustering Dependence in Panel

Assumption 1 Random elements Wit = (Yit ,Xit ,Vit) are
generated by the underlying process:

Wit = µ+ h (αi , γt , εit) , ∀i ≥ 1, t ≥ 1,

where µ = E [Wit ]; h is unknown; vector components (αi )i≥1,
(γt)t≥1, and (εit)i≥1,t≥1 are mutually independent; αi is i.i.d
across i , εit is i.i.d across i and t, and γt is strictly stationary.

Common in cluster-robust inference literature.

Assumption 2 ( beta-mixing of {γt}t≥1 )

A generalization of Aldous-Huber-Kallenberg (AHK)
representation (Chiang et al., 2024, REStat, Chen and
Vogelsang, 2024, JoE).
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Existing Approaches and My Proposal

Approach 1: Assuming the stochastic error is conditionally
normal (Bickel et al., 2009, AOS).

Approach 2: Self-normalizing the non-Gaussian errors
(Belloni et al., 2012, ECTA, Belloni et al., 2016, JBES)

Approach 3: Deriving concentration inequalities allowing for
dependent error process (Babii et al., 2023, JOE, Gao et al.,
2024, WP).

My proposal: Hoeffding-type decomposition;
regressor-specific penalty weights robust to two-way
dependence.

My construction of penalty level and weights .
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Consistency and convergence rate results

Theorem: Given the AHK approximate sparsity , feasible weights , and
regularity conditions , with some Cλ = O(1) and γ = o(1), we have
the number of selected regressors be O(s) and the l2 rate of
convergence for the (post) two-way cluster-LASSO is

OP

(√
s log(p/γ)

N∧T

)
.

Comparison: OP

(√
s log p
NT

)
under random sampling as in

Bickel et al., 2009, AOS; OP

(√
s log(p∨NT )

NT

)
under random

sampling in Belloni et al., 2012, ECTA; OP

(√
s log(p∨NT )

NlT

)
under cross-sectional independence in Belloni et al. (2016)
where lT ∈ [1,T ].

Oracle case
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Challenge Two

Consider a semiparametric approach:

θ̂ =

[
N∑
i=1

T∑
t=1

D ′
itDit

]−1 N∑
i=1

T∑
t=1

D ′
it(Yit − fit ζ̂).

ζ̂ can be noisy due to two-way cluster dependence and high
dimensionality.
A better second-step estimator: Let D̈it := Dit − Ê[Dit |Xit ],

θ̂ =

[
N∑
i=1

T∑
t=1

D̈ ′
itDit

]−1 N∑
i=1

T∑
t=1

D̈ ′
it

(
Yit − fit ζ̂

)
.

But there is still a problematic error term in θ̂ − θ0:

N∑
i=1

T∑
t=1

VD
it fit

(
ζ0 − ζ̂

)
, VD

it := Dit − E[Dit |Xit ].

Cross-fitting: split the sample for the two-step estimations.
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Clustered-Panel Cross-Fitting

Lemma ( validity of the cross-fitting ): Under Assumptions 1 (AHK) and 2
(beta-mixing), the cross-fitting sub-samples are
“approximately”independent as N,T → ∞ with log(N)/T → 0.
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Asymptotic Normality

Theorem: Given rates of convergence for the first-step and
regularity conditions ,

√
N ∧ T

(
θ̂ − θ0

)
⇒ N(0,V ) where

V := A−1
0 ΩA−1′

0 , Ω := ΛaΛ
′
a + cΛgΛ

′
g .

A sufficient L2 rate of convergence for η0 is o
(
(N ∧ T )−1/4

)
.

Cluster-robust variance estimators
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Challenge Three

Consider the following partial linear model:

Yit =Ditθ0 + g(Xit , ci , dt) + Uit , E[Uit |Xit , ci , dt ] = 0.

Zit has the same dimension of Dit ; E[ZitUit ] = 0. As a special
case, Zit = Dit .

In the running example, Yit is the state gross output; Dit

state military spending; Xit are low-dimensional controls; Zit is
a Bartik IV.

Instead of imposing the separability, we consider g as an
approximately sparse function and let data decide on the
selection.

(ci , dt) as correlated random effects .
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CRE approach: the generalized Mundlak device

A generalized Mundlak device:

ci = hc(F̄i , ϵ
c
i ), (1)

dt = hd(F̄t , ϵ
d
t ), (2)

where F̄i =
1
T

∑T
t=1 Fit , F̄t =

1
N

∑N
i=1 Fit , Fit := (Dit ,X

′
it)

′;
hc and hd are unknown functions; (ϵci , ϵ

d
t ) are independent

shocks.

Generalized by a flexible function. Also see Wooldridge and
Zhu, 2020, JBES.

Almost ready but there is one more subtle issue.
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A Subtle Issue

Fixed-effect and random-effect approaches may not be
compatible with cross-fitting.

E.g., the proxies 1/N
∑N

i=1 Xit and 1/T
∑T

s=1 Xjs must share
the data point Xjt .

In this case, to quantify the impact on the coupling result is
tricky and may require extra conditions.

Without cross-fitting, it is generally hard to establish
inferential theory with growing dimensions.

It turns out inference using full sample is possible in this
setting, under a slightly stronger sparsity condition.
inference with full sample
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Government Spending Multiplier: Baseline Method

Table 1: Multiplier estimates of the original model

(1) (2) (3) (4) (5) (6) (7)
Unobs. Oil Real First IV 1 Two-way

Heterog. Price Int. Pop. Step θ̂ Robust s.e.

Fixed Effects

No No No POLS 1.43 0.68
Yes No No POLS 1.30 0.56
No Yes No POLS 1.40 0.57
Yes Yes No POLS 1.27 0.45
Yes Yes Yes POLS 1.36 0.43
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Government Spending Multiplier: Full-Sample Method

Table 2: Multiplier estimates of the extended model.

(1) (2) (3) (4) (5) (6) (7)
Cross- Poly. Param. First Z: Param. Two-way

Fitting Trans. Gen. Stage Sel. θ̂ Robust s.e.

No None 7

POLS 7 1.51 0.66
H LASSO 2 1.43 0.66
C LASSO 4 1.43 0.66
TW LASSO 2 1.43 0.70

No 2nd 35

POLS 35 1.73 0.99
H LASSO 6 1.73 1.01
CR LASSO 5 1.75 1.02
TW LASSO 4 1.43 0.61

No 3rd 119

POLS 119 2.20 1.19
H LASSO 10 1.97 1.16
CR LASSO 6 0.98 0.66
TW LASSO 6 1.47 0.59

Cross-Fitting Method Simulation
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Summary

The inferential theory for high-dim. models is particularly
relevant in panel settings.

This paper enriches the toolbox of researchers in dealing
with high-dim. panel models.

I develop a LASSO-based estimator for a high-dimensional
regression model and valid inference with or without
cross-fitting.

Unobserved heterogeneity complicates the inference. I
propose a simple and flexible correlated random effect
approach.

I illustrate in a panel data application that high
dimensionality can be hidden and how proposed approaches
allow for a robustness check.
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Thank you for
listening and comments!
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Simulation: DGP(i)

DGP(i) - Linear model:

Yit = Ditθ0 + Xitβ0 + Uit ,

Dit = Xitπ0 + Vit ,

where β0 and π0 are sparse in a cut-off design.

DGP(i) - Additive components:

Xit,j = w1αi ,j + w2γt,j + w3εit,j ,

Uit = w1α
u
i + w2γ

u
t + w3ε

u
it ,

Vit = w1α
v
i + w2γ

v
t + w3ε

v
it ,
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Simulation: DGP(ii)

DGP(ii) - Partial linear model:

Yit = Ditθ0 + (Xitβ0 + ci + dt)
2 + Uit ,

Dit =
exp(Xitπ0)

1 + exp(Xitπ0)
+ Vit ,

ci = D̄i + X̄iξ0 + ϵci , dt = D̄t + X̄tζ0 + ϵdt ,

where β0, π0, ξ0, and ζ0 are sparse in a polynomial-decay
design;
DGP(ii) - Multiplicative components:

Xit,j = w1αi ,j + w2γt,j + w3εit,j ,

Uit =
w4

cp

p∑
j=1

[αu
i γt,j + αi ,jγ

u
t ] + w5ε

u
it ,

Vit =
w4

cp

p∑
j=1

[αv
i γt,j + αi ,jγ

v
t ] + w5ε

v
it ,
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Simulation results

Table 1: DGP(i) with N = T = 25, s = 5, p = 200, ι = 0.5, ρ = 0.5, cβ = cπ = 0.5

Cross First-Step First-Step Ave. Second-Step Coverage (%)
Fitting Estimator Sel. Y Sel. D Bias SD RMSE CHS DKA

No

POLS 200 200 0.003 0.053 0.053 78.9 95.1
H LASSO 26.0 26.0 0.062 0.065 0.090 58.5 78.7
R LASSO 17.6 17.6 0.070 0.067 0.097 65.2 79.5
C LASSO 8.6 8.9 0.036 0.095 0.101 80.0 87.5

TW LASSO 6.7 6.9 0.023 0.096 0.099 84.3 90.4

Yes

POLS 200 200 0.006 0.113 0.113 98.2 99.4
H LASSO 16.9 16.6 0.053 0.131 0.141 96.0 97.6
R LASSO 9.5 9.5 0.054 0.130 0.141 96.0 98.2
C LASSO 8.0 8.1 0.041 0.130 0.136 96.2 97.4

TW LASSO 6.7 6.4 0.057 0.126 0.138 95.8 97.2



Introduction TW LASSO Cross-Fitting Unobserved Heterogeneity Discussion References

Simulation results

Table 2: DGP(i) with N = T = 25, s = 5, p = 600, ι = 0.5, ρ = 0.5, cβ = cπ = 0.5

Cross First-Step First-Step Ave. Second-Step Coverage (%)
Fitting Estimator Sel. Y Sel. D Bias SD RMSE CHS DKA

No

POLS 600 600 0.008 0.221 0.221 26.6 38.6
H LASSO 39.5 39.8 0.073 0.049 0.087 51.2 78.9
R LASSO 25.1 25.3 0.079 0.055 0.097 52.4 79.1
C LASSO 14.0 15.2 0.058 0.096 0.112 68.8 78.4

TW LASSO 6.9 7.5 0.033 0.098 0.103 81.6 88.1

Yes

H LASSO 24.8 24.7 0.056 0.134 0.146 94.5 98.4
R LASSO 12.1 12.1 0.054 0.137 0.147 94.5 96.1
C LASSO 10.7 11.6 0.043 0.139 0.145 95.1 96.1

TW LASSO 6.8 7.6 0.065 0.140 0.154 90.7 95.1
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Simulation results

Table 3: DGP(ii) with N = T = 25, s = p = 10, ι = 0.5, ρ = 0.5,
cβ = 1, cπ = 4, cξ = cζ = 1/4; 2nd-order polynomial series are used for approximation

Cross First-Step First-Step Ave. Second-Step Coverage (%)
Fitting Estimator Sel. Y Sel. D Bias SD RMSE CHS DKA

No

POLS 560 560 0.012 0.173 0.173 54.4 67.4
H LASSO 12.2 3.4 0.032 0.126 0.130 87.2 90.8
R LASSO 11.0 3.3 0.030 0.127 0.130 86.2 91.0
C LASSO 12.3 24.7 0.030 0.127 0.130 87.8 91.8

TW LASSO 9.3 3.1 0.023 0.127 0.129 87.8 93.6

Yes

H LASSO 9.0 2.6 0.015 0.156 0.157 95.6 98.8
R LASSO 6.9 2.0 0.010 0.157 0.158 95.8 98.8
C LASSO 9.1 3.1 0.003 0.153 0.153 96.6 99.0

TW LASSO 6.8 1.2 0.020 0.151 0.152 97.2 98.8

Back



Introduction TW LASSO Cross-Fitting Unobserved Heterogeneity Discussion References

Two-way cluster dependence

Assumption AHK Random elements Wit = (Yit ,Xit ,Uit) are
generated by the underlying process:

Wit = µ+ h (αi , γt , εit) , ∀i ≥ 1, t ≥ 1,

where µ = E [Wit ]; h is unknown; vector components (αi )i≥1,
(γt)t≥1, and (εit)i≥1,t≥1 are mutually independent; αi is i.i.d
across i , εit is i.i.d across i and t, and γt is strictly stationary.

Common in cluster-robust inference literature.

Assumption AR ( beta-mixing of {γt}t≥1 )

A generalization of Aldous-Huber-Kallenberg (AHK)
representation (Chiang et al., 2024, REStat).
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Assumption

For some s > 1 and δ > 0,

1 E [X ′
itUit ] = 0, E [∥Xit∥8(s+δ)] <∞, E [∥Uit∥8(s+δ)] <∞.

2 Either ΛaΛ
′
a > 0 or ΛgΛ

′
g > 0, and N/T → c as (N,T ) → ∞

for some constant c .

Back
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High Dimensionality from Flexible Modeling

Suppose X is k × 1. Let Lτ be τ−th order polynomial
transformation and let r denote the approximation error.

Then, the high dimensionality is realized as follows:

model sparse approx. dim. of unknown param.

Y = f (X ) + U no approx. ∞,
Y = Lτ (X )β + r + U τ = 2 k2/2 + 3k/2
Y = Lτ (X )β + r + U τ = 3 k3/6 + k2 + 11k/6
Back
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Absolute Regularity

Let ∥ν∥TV denote the total variation norm of a signed measure ν
on a measurable space (S ,Σ) where Σ is a σ-algebra on S :

∥ν∥TV = sup
A∈Σ

ν(A)− ν(Ac)

Define the dependence coefficient of X and Y as:

β(X ,Y ) =
1

2
∥PX ,Y − PX × PY ∥TV

Assumption (Absolute Regularity of {γt}t≥1)

The sequence {γt}t≥1 is beta-mixing at a geometric rate:

βγ(q) = sup
s≤T

β ({γt}t≤s , {γt}t≥s+q) ≤ cκexp(−κq), ∀q ∈ Z+,

for some constants κ > 0 and cκ ≥ 0.

Back
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Assumption (Approximate Sparse Model)

The unknown function f can be well-approximated by a dictionary
of transformations fit = F (Xit) where fit is a p × 1 vector and F is
a measurable map, such that

f (Xit) = fitζ0 + rit

where the coefficients ζ0 and the approximation error rit satisfy

∥ζ0∥0 ≤ s = o(N ∧ T ), ∥rit∥2,NT ≡ R = OP

(√
s

N ∧ T

)
.

Back
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My Construction of Weights

I consider the following choice of penalty level λ and penalty
weights ω: for each j = 1, ..., p,

λ = Cλ
NT

(N ∧ T )1/2
Φ−1

(
1− γ

2p

)
,

ωj = max{ωa,j , ωe,j}+max{ωg ,j , ωe,j} −min{ωa,j , ωg ,j , ωe,j},

ωa,j =
N∧V
N2

∑N
i=1 a

2
i ,j , ωg ,j =

N∧V
T 2

∑B
b=1

(∑
t∈Hb

gt,j

)2
,

ωe,j =
N∧V
NT

∑N
i=1

(∑T
t=1 eit,j

)2
.

Extra Tuning Parameters : Cλ, γ,B.

Feasible weights: âi ,j =
1
T

∑T
t=1 fit,j V̂it , ĝt,j =

1
N

∑N
i=1 fit,j V̂it ,

and êit,j = fit,j V̂it − âi ,j − ĝt,j + ENT [fit,j V̂it ].

Back
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Tuning Parameters

Tuning parameters for λ: Cλ = O(1) and γ = o(1). In
practice, Cλ = 2 and γ = log(p ∨ N ∨ T ).

Tuning parameters for ω: B = round(T/h),
h = round(T 1/5) + 1, and Hb = {t : h(b − 1) + 1 ≤ t ≤ hb}

Back
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Valid feasible weights: There exist l , u such that

lω
1/2
j ≤ ω̂

1/2
j ≤ uω

1/2
j , uniformly over j = 1, ..., p where 0 < l ≤ 1

and 1 ≤ u <∞ such that l → 1. Back
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As we allow the dimension of fit to be larger than the sample
size, the empirical Gram matrix Mf = 1

NT

∑N
i=1

∑T
t=1 fit f

′
it is

singular.

However, it turns out we only need its certain sub-matrices to
be non-singular.

Assumption (Sparse Eigenvalues)

For any C > 0, there exists constants 0 < κ1 < κ2 <∞ such that
with probability approaching one as (N,T ) → ∞ jointly,

κ1 ≤ min
δ∈∆(m)

δ′Mf δ < max
δ∈∆(m)

δ′Mf δ ≤ κ2,

where ∆(m) = {δ : ∥δ∥0 = m, ∥δ∥2 = 1}.

Back
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Assumption (Regularity Conditions)

(i) log(p/γ) = o
(
T 1/6/(logT )2

)
. (ii) For some µ > 1, δ > 0,

maxj≤p E [|fit,j |8(µ+δ)] <∞, E [|Vit |8µ+δ)] <∞. (iii) minj≤p E (a
2
i,j) > 0,

minj≤p E (g
2
t,j) > 0, and minj≤p E

[(∑T
t=1 eit,j

)2

|{γt}Tt=1

]
> 0 almost

surely.

Back
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Rate of Convergence in the Oracle Case

Consider the sample mean estimator θ̂ = 1
NT

∑N
i=1

∑T
t=1 Yit ,

which can be decomposed as follows:

θ̂ − θ0 =
1

N

N∑
i=1

ai +
1

T

T∑
t=1

gt +
1

NT

N∑
i=1

T∑
t=1

eit ,

where ai := E[Yit − θ0|αi ], gt := E[Yit − θ0|γt ], and
eit := Yit − θ0 − ai − gt .

Under some regularity conditions, for each j ,

θ̂j = OP

(
1√
N∧T

)
and ∥θ̂ − θ0∥2 = OP

(√
s

N∧T
)
.

Back
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Panel-DML: Orthogonalized Moment Condition

Let φ(Wit ; θ, η) be an identifying moment condition:

E [φ(Wit ; θ0, η0)] = 0

where Wit are random elements; θ are the low-dim.
parameters of interest and η are nuisance parameters.

Let ψ(Wit ; θ, η) be a corresponding orthogonal moment
condition such that

E [ψ(W ; θ0, η0)] = 0,

∂ηE [ψ(W ; θ0, η0)][η − η0] = 0.

Back
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Cross Fitting Validity

Lemma (Independent Coupling)

Consider the main sample W (k, l) and auxiliary sample W (−k,−l) for
k = 1, ...,K and l = 1, ..., L. Suppose Assumptions 1-2 hold for {Wit}. Then,
if logN/T → 0 as N,T → ∞, we can construct W̃ (k, l) and W̃ (−k,−l) such
that:

They are independent of each other;

They have the same marginal distribution as W (k, l) and W (−k,−l),
respectively;

and
Pr

{
(W (k, l),W (−k,−l)) ̸=

(
W̃ (k, l), W̃ (−k,−l)

)
, for some (k, l)

}
= o(1)

Back
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Assumption (Statistical Rates and Score Regularity)

For some positive sequence (∆NT ) that ∆NT → 0, we have

(i) For each (k, l), the nuisance estimator η̂k,l belongs to the
realization set TNT with probability 1−∆NT , where TNT
contains η0.

(ii) For all i ≥ 1, t ≥ 1, and some q > 2, the following moment
conditions hold:

mNT := sup
η∈TNT

(EP ∥ψ(Wit ; θ0, η)∥q)1/q <∞, (3)

m′
NT := sup

η∈TNT
(EP ∥ψa(Wit ; η)∥q)1/q <∞. (4)
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Assumption (Statistical Rates and Score Regularity)

(iii) The following conditions on the statistical rates rNT , r
′
NT , λ

′
NT hold

for all i ≥ 1, t ≥ 1:

rNT := sup
η∈TNT

∥EP [ψ
a(Wit ; η)− ψa(Wit ; η0)]∥ ≤ δNT ,

r ′NT := sup
η∈TNT

(
EP ∥ψ(Wit ; θ0, η)− ψ(Wit ; θ0, η0)∥2

)1/2

≤ δNT ,

λ′NT := sup
r∈(0,1),η∈TNT

∥∥∂2r EP [ψ(Wit ; θ0, η0 + r(η − η0))]
∥∥ ≤ δNT/

√
N.

Back
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Assumption (Linear Orthogonal Scores)

For any P ∈ PNT , the following conditions hold:

(i) ψ(W ; θ, η) = ψa(W , η)θ + ψb(W , η), ∀ W ∈ W, θ ∈ Θ, η ∈
T .

(ii) ψ(W ; θ, η) satisfy the Neyman orthogonality conditions, or
more generally, by a λNT near-orthogonality condition:
λNT := supη∈TNT ∥∂rE [ψ(W ; θ0, η0 + r(η − η0))]|r=0∥ ≤
δNT/

√
N, where TNT ∈ T is a nuisance realization set.

(iii) The map η → EP [ψ(Wit ; θ, η)] is twice continuously
Gateaux-differentiable on T .

(iv) The singular values of the matrix A0 := EP [ψ
a(Wit ; η0)] are

bounded between a0 and a1.

(v) Either λmin[ΛaΛ
′
a] > 0 or λmin[ΛgΛ

′
g ] > 0.
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Variance Estimators

V̂CHS = Â−1Ω̂CHS Â
−1′ , V̂DKA = Â−1Ω̂DKAÂ

−1′

Ω̂CHS = Ω̂A + Ω̂DK − Ω̂NW , Ω̂DKA = Ω̂A + Ω̂DK .

where Â = 1
KL

∑K
k=1

∑L
l=1

1
NkTl

∑
i∈Ik ,s∈Sl

ψa(Wit ; η̂kl), and

Ω̂A :=
1

KL

K∑
k=1

L∑
l=1

1

NkT 2
l

∑
i∈Ik ,t∈Sl ,r∈Sl

ψ(Wit ; θ̂, η̂kl)ψ(Wir ; θ̂, η̂kl)
′,

Ω̂DK :=
1

KL

K∑
k=1

L∑
l=1

K/L

NkT 2
l

∑
t∈Sl ,r∈Sl

k

(
|t − r |
M

) ∑
i∈Ik ,j∈Ik

ψ(Wit ; θ̂, η̂kl)ψ(Wjr ; θ̂, η̂kl)
′,

Ω̂NW :=
1

KL

K∑
k=1

L∑
l=1

K/L

NkT 2
l

∑
i∈Ik ,t∈Sl ,r∈Sl

k

(
|t − r |
M

)
ψ(Wit ; θ̂, η̂kl)ψ(Wir ; θ̂, η̂kl)

′.

where k
(
m
M

)
= 1− m

M
is the Bartlett kernel and M is the bandwidth parameter.
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Asymptotic Normality without Cross-Fitting

Under sparse approximation and Mundlak device, the (near)
Neyman-orthogonal moment function is given by

ψ(Wit ; θ, η) := (Zit − fitζ0) (Yit − fitβ0 − θ0 (Dit − fitπ0)) .

where fit includes a constant and the polynomial
transformation of (Xit , X̄i , X̄t , D̄i , D̄t).

Theorem: Under Assumptions AHK , generalized Mundlak device ,
regularity conditions and sparse approximation with s = o

( √
N∧T

log(p/γ)

)
,

∥r ιit∥NT ,2 = oP

(√
1

N∧T

)
for l = Y ,D, as N,T → ∞ and

N/T → c where 0 < c <∞, the full-sample two-step
estimator is asymptotically normal.

consistent variance estimators using full sample Back
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Assumption (Regularity Conditions for the Partial Linear Model)

(i) A0 is non-singular.

(ii) For any ϵ, hc(F , ϵ) and hd(F , ϵ) are invertible in F .

(iii) For some µ > 1, δ > 0, maxj≤p E[|fit,j |8(µ+δ)] <∞ and
E[|V l

it |8(µ+δ)] <∞ for l = g ,D,Y ,Z .

(iv) Either λmin[Σa] > 0 or λmin[Σg ] > 0; minj≤p E [a
l
i ,j ]

2 > 0,

minj≤p E [g
l
t,j ]

2 > 0, minj≤p E

[(∑T
t=1 e

l
it,j

)2
|{γt}Tt=1

]
> 0

almost surely, for l = D,Y ,Z .

(v) log(p/γ) = o
(
T 1/6/(logT )2

)
.

(vi) The feasible penalty weights ω̂l satisfy the condition for
l = D,Y ,Z .

(viii) sparse eigenvalues condition .
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Variance estimators using full sample

Theorem

Suppose assumptions for Theorem holds for P = PNT for each
(N,T ) with rDit = rYit = 0 a.s., and M/T 1/2 = o(1). Then,
(N,T ) → ∞ and N/T → c where 0 < c < ∞,

V̂CHS =V + oP(1),

V̂DKA =V̂CHS + oP(1).
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Government Spending Multiplier: Cross-Fitting Method

Table 3: Estimates of the open economy relative multiplier from the extended model.

(1) (2) (3) (4) (5) (6) (7) (8)
Cross- Poly. Param. First Z: Param. CHS DKA

Fitting Trans. Gen. Stage Ave. Sel. θ̂ s.e. s.e.

Yes None 7
H LASSO 2.0 1.28 1.73 2.00
C LASSO 2.0 1.32 1.75 2.03

TW LASSO 2.6 1.18 1.77 2.05

Yes 2nd 35
H LASSO 5.2 1.12 2.18 2.52
C LASSO 5.8 1.46 1.95 2.24

TW LASSO 4.1 1.20 1.42 1.70

Yes 3rd 119
H LASSO 8.3 1.81 3.17 3.47
C LASSO 6.5 1.25 1.59 1.91

TW LASSO 5.3 1.50 1.18 1.44
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